Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Biochemical and biophysical research communications ; 2023.
Article in English | EuropePMC | ID: covidwho-2288998

ABSTRACT

PF-07321332 and PF-07304814, inhibitors against SARS-CoV-2 developed by Pfizer, exhibit broad-spectrum inhibitory activity against the main protease (Mpro) from various coronaviruses. Structures of PF-07321332 or PF-07304814 in complex with Mpros of various coronaviruses reveal their inhibitory mechanisms against different Mpros. However, the structural information on the lower pathogenic coronavirus Mpro with PF-07321332 or PF-07304814 is currently scarce, which hinders our comprehensive understanding of the inhibitory mechanisms of these two inhibitors. Meanwhile, given that some immunocompromised individuals are still affected by low pathogenic coronaviruses, we determined the structures of lower pathogenic coronavirus HCoV-229E Mpro with PF-07321332 and PF-07304814, respectively, and analyzed and defined in detail the structural basis for the inhibition of HCoV-229E Mpro by both inhibitors. Further, we compared the crystal structures of multiple coronavirus Mpro complexes with PF-07321332 or PF-07304814 to illustrate the differences in the interaction of Mpros, and found that the inhibition mechanism of lower pathogenic coronavirus Mpro was more similar to that of moderately pathogenic coronaviruses. Our structural studies provide new insights into drug development for low pathogenic coronavirus Mpro, and provide theoretical basis for further optimization of both inhibitors to contain potential future coronaviruses.

2.
Biochem Biophys Res Commun ; 657: 16-23, 2023 05 21.
Article in English | MEDLINE | ID: covidwho-2288999

ABSTRACT

PF-07321332 and PF-07304814, inhibitors against SARS-CoV-2 developed by Pfizer, exhibit broad-spectrum inhibitory activity against the main protease (Mpro) from various coronaviruses. Structures of PF-07321332 or PF-07304814 in complex with Mpros of various coronaviruses reveal their inhibitory mechanisms against different Mpros. However, the structural information on the lower pathogenic coronavirus Mpro with PF-07321332 or PF-07304814 is currently scarce, which hinders our comprehensive understanding of the inhibitory mechanisms of these two inhibitors. Meanwhile, given that some immunocompromised individuals are still affected by low pathogenic coronaviruses, we determined the structures of lower pathogenic coronavirus HCoV-229E Mpro with PF-07321332 and PF-07304814, respectively, and analyzed and defined in detail the structural basis for the inhibition of HCoV-229E Mpro by both inhibitors. Further, we compared the crystal structures of multiple coronavirus Mpro complexes with PF-07321332 or PF-07304814 to illustrate the differences in the interaction of Mpros, and found that the inhibition mechanism of lower pathogenic coronavirus Mpro was more similar to that of moderately pathogenic coronaviruses. Our structural studies provide new insights into drug development for low pathogenic coronavirus Mpro, and provide theoretical basis for further optimization of both inhibitors to contain potential future coronaviruses.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Humans , Coronavirus 229E, Human/physiology , SARS-CoV-2/metabolism , Peptide Hydrolases/metabolism
3.
Biochem Biophys Res Commun ; 611: 190-194, 2022 06 30.
Article in English | MEDLINE | ID: covidwho-1800190

ABSTRACT

The 3C-like protease (Mpro, 3CLpro) plays a key role in the replication process in coronaviruses (CoVs). The Mpro is an essential enzyme mediates CoVs replication and is a promising target for development of antiviral drugs. Until now, baicalein has been shown the specific activity for SARS-CoV Mpro in vitro experiments. In this study, we resolved the SARS-CoV Mpro with baicalein by X-ray diffraction at 2.25 Å (PDB code 7XAX), which provided a structural basis for the research and development of baicalein as an anti-CoVs drug.


Subject(s)
Severe acute respiratory syndrome-related coronavirus , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases , Flavanones , Peptide Hydrolases , Protease Inhibitors/chemistry , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL